Syntactic adaptation to short-term cue-based distributional regularities

Weijie Xu¹, Jiaxuan Li¹, Ming Xiang², Richard Futrell¹

¹University of California, Irvine, ²The University of Chicago

44th Annual Conference of the Cognitive Science Society July 27 - 30, 2022

- Humans make adaptation to short-term exposure [1-3]
- But...previous studies test repeated exposure to the same structure
 > Reduced-relative clause:
 - e.g. The patient (that was) examined by the doctor was diagnosed with diabetes.
 - We ask: Adaptation to context-dependent cue-based regularities?

Current Study

Context-dependent adaptation

> Animacy cue in reduced-relative clause garden-path sentences

Subj.NP Animacy (animate vs. inanimate)

Parsing bias (RR vs. MV)

- > Predictions:
 - If animate subj. \rightarrow RR ; smaller GP effect for animate subj.
 - If inanimate subj. \rightarrow RR ; smaller GP effect for inanimate subj.

Design

Training Block

Testing Block

Design

Training Block

Testing Block

> GP effect of RR sentences
 Original bias: animate → larger GP ;
 inanimate → smaller GP

Testing block sample stimuli

(1) Animate \rightarrow RR

The patient (that was) examined by the doctor was diagnosed with diabetes.

(2) Inanimate \rightarrow RR

The document (that was) examined by the lawyer turned out to be unreliable.

Design

Training Block

- > Manipulate cue-based regularities
- > 3 treatment groups

Testing Block

 > GP effect of RR sentences
 Original bias: animate → larger GP ; inanimate → smaller GP

Design Training Block **Testing Block** Manipulate cue-based regularities GP effect of RR sentences > > **Original bias:** animate \rightarrow larger GP ; 3 treatment groups > inanimate \rightarrow smaller GP **Group A** (n=122): animate \rightarrow RR; inanimate \rightarrow MV **Group A sample stimuli** animate \rightarrow smaller GP; inanimate \rightarrow larger GP (1) Animate \rightarrow RR

The defendant examined by the lawyer turned out to be unreliable.

(2) Inanimate \rightarrow MV

The hypothesis examined the factors that affected the quality of language inputs.

Design

Training Block

- > Manipulate cue-based regularities
- > 3 treatment groups

<u>Group A</u> (n=122): animate \rightarrow RR; inanimate \rightarrow MV animate \rightarrow smaller GP; inanimate \rightarrow larger GP

Group B (n=126): animate \rightarrow MV; inanimate \rightarrow RR animate \rightarrow larger GP; inanimate \rightarrow smaller GP

GP effect of RR sentences
 Original bias: animate → larger GP ;
 inanimate → smaller GP

Testing Block

Group B sample stimuli

- (1) Animate \rightarrow MV
 - The defendant examined the testimony carefully before going to the court.

(2) Inanimate \rightarrow RR

The hypothesis examined by the young scientist was not widely known until the recent years.

Design

Training Block

- > Manipulate cue-based regularities
- > 3 treatment groups

```
Group A (n=122):
animate \rightarrow RR; inanimate \rightarrow MV
animate \rightarrow smaller GP; inanimate \rightarrow larger GP
Group B (n=126):
animate \rightarrow MV; inanimate \rightarrow RR
animate \rightarrow larger GP; inanimate \rightarrow smaller GP
Group C (n=125):
Filler items; show original bias
```

 > GP effect of RR sentences
 Original bias: animate → larger GP ; inanimate → smaller GP

Testing Block

Data Analysis

> Reading times on test block

Animate subject

Ambiguous: The patient examined by the doctor was diagnosed with diabetes. Unambiguous: The patient that was examined by the doctor was diagnosed with diabetes.

Inanimate subject

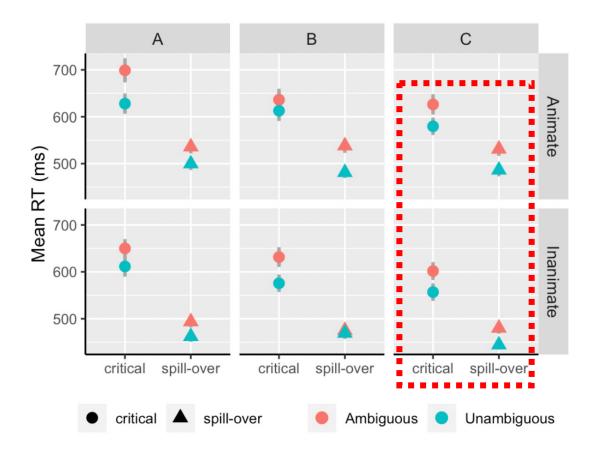
Ambiguous:The documentexamined by the lawyerturned outto be unreliable.Unambiguous:The document that was examinedby the lawyerturned outto be unreliable.

LMEM over log RTs: {disambiguating} {spill-over}

- > GP effect: Ambiguity
- > GP effect across subject animacy across treatment groups

Critical statistics: Ambiguity x Animacy x Group

Results

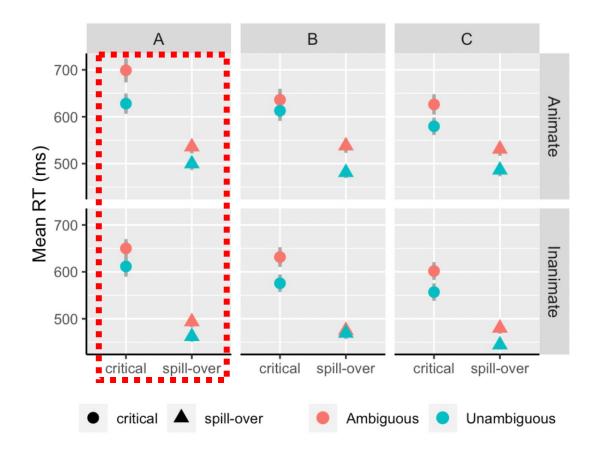


> For control Group C

- No effect in Group C
- GP of animate = GP of inanimate
- No bias towards either animate or inanimate

(see the formulation of statistical models in Appendix)

Results

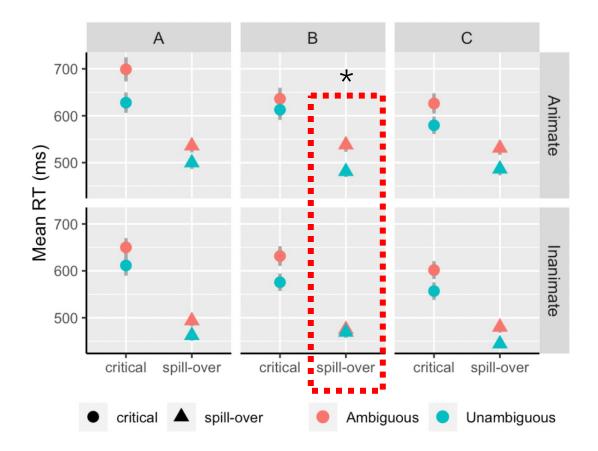


> For Group A

- No effect in Group A
- GP of animate = GP of inanimate
- No adaptation compared to Group C

(see the formulation of statistical models in Appendix)

Results



> For Group B

- GP of animate > GP of inanimate
 (animate → MV; inanimate → RR)
- Adaptation compared to Group C !
- Ambiguity x Animacy x Group not significant, due to statistical power [4]

(see the formulation of statistical models in Appendix)

- Participants track and adapt to cue-based (animacy) short-term regularities
- But...only when consistent with long-term knowledge
 - > i.e. inanimate \rightarrow RR; animate \rightarrow MV
- Inconsistent with inverse frequency effect [5]
 - We propose a log-linear model for cue-based syntactic adaptation

(see modeling details in the remaining slides)

Thanks for your listening!

Objective: listener's syntactic expectation based on cues

- Why log-linear?
 - > A natural way to represent cues and to model the adaptation of cue weights
- Target quantity: $p(\mathbf{RR}|c)$
 - > The patient examined C_{ani} p(RR|c_{ani})
 - Log-linear model for p(RR|c):
 - > w_{ani}^{RR} is association strength
 - > b^{RR} is long-term bias towards RR

$$p(\mathbf{RR} \mid c_{\mathrm{ani}}) = \frac{e^{w_{\mathrm{ani}}^{\mathrm{RR}} + b^{\mathrm{RR}}}}{e^{w_{\mathrm{ani}}^{\mathrm{RR}} + b^{\mathrm{RR}}} + e^{w_{\mathrm{ani}}^{\mathrm{MV}} + b^{\mathrm{MV}}}}}{1}$$
$$= \frac{1}{1 + e^{(w_{\mathrm{ani}}^{\mathrm{MV}} - w_{\mathrm{ani}}^{\mathrm{RR}}) + (b^{\mathrm{MV}} - b^{\mathrm{RR}})}}.$$

- In our SPR experiment
- > Group A

animate \rightarrow RR; inanimate \rightarrow MV

$$w_{\text{ani}}^{\text{RR}}(A) = w_{\text{ani}}^{\text{RR}} + k_A$$

 $w_{\text{inani}}^{\text{RR}}(A) = w_{\text{inani}}^{\text{RR}} - k_A$

> Group B

animate \rightarrow MV; inanimate \rightarrow RR

$$w_{\text{ani}}^{\text{RR}}(\mathbf{B}) = w_{\text{ani}}^{\text{RR}} - k_B$$
$$w_{\text{inani}}^{\text{RR}}(\mathbf{B}) = w_{\text{inani}}^{\text{RR}} + k_B$$

Linking p(RR|c) to empirical garden-path based on surprisal theory [6-7] $GP = RT("by" | c_{ambig}) - RT("by" | c_{unambig})$ $\propto -\ln p(RR | c_{ambig})$

Proof

$$\implies \operatorname{RT}("by" \mid c) \propto -\ln p("by" \mid c)$$

$$p(\text{``by''} \mid c) = p(\text{RR} \mid c)p(\text{``by''} \mid \text{RR}, c) + p(\text{MV} \mid c)p(\text{``by''} \mid \text{MV}, c)$$
$$= p(\text{RR} \mid c)p(\text{``by''} \mid \text{RR}, c)$$

Model-predicted GP before adaptation

RT effect $\propto -\ln p(\text{RR} \mid c_{\text{ani}})$ = $\ln \left(1 + e^{w'_{\text{ani}} + b'} \right)$,

$$p(\text{RR} \mid c_{\text{ani}}) = \frac{e^{w_{\text{ani}}^{\text{RR}} + b^{\text{RR}}}}{e^{w_{\text{ani}}^{\text{RR}} + b^{\text{RR}}} + e^{w_{\text{ani}}^{\text{MV}} + b^{\text{MV}}}}$$
$$= \frac{1}{1 + e^{(w_{\text{ani}}^{\text{MV}} - w_{\text{ani}}^{\text{RR}}) + (b^{\text{MV}} - b^{\text{RR}})}}.$$
$$b' \equiv b^{\text{MV}} - b^{\text{RR}}$$
$$w_{\text{ani}}' \equiv w_{\text{ani}}^{\text{MV}} - w_{\text{ani}}^{\text{RR}}$$

Model-predicted GP *after* adaptation

> <u>Group A</u> animate \rightarrow RR; inanimate \rightarrow MV RT(A | c_{ani}) effect $\propto -\ln p(\text{RR} | c_{ani})$ $= \ln(1 + e^{((w'_{ani} - k_A) + b')})$ RT(A | c_{inani}) effect $\propto -\ln p(\text{RR} | c_{inani})$

$$= \ln (1 + e^{((w'_{\text{inani}} + k_A) + b')})$$

> Group B

animate \rightarrow MV; inanimate \rightarrow RR RT(B | c_{ani}) effect $\propto -\ln p(\text{RR} | c_{ani})$ $= \ln(1 + e^{((w'_{ani} + k_B) + b')})$

 $RT(B \mid c_{\text{inani}}) \text{ effect} \propto -\ln p(RR \mid c_{\text{inani}})$ $= \ln(1 + e^{((w'_{\text{inani}} - k_B) + b')})$

Estimating Parameters

Estimating bias b' by solving:

$$p(\mathbf{R}\mathbf{R}) = \frac{1}{1 + e^{b'}}$$

p(RR): Penn Treebank Frequencies

MV construction: (NP-SBJ !<< @VP) \$+ @VP

RR construction: NP-SBJ < (NP \$ @VP)

p(RR) = 0.008

Estimating Parameters

Estimating association strength w' by solving the log-linear model:

$$p(\mathrm{RR} \mid c_{\mathrm{ani}}) \propto e^{w'_{\mathrm{ani}} + b'}$$

p(\mathbf{RR}|\mathbf{c}): GPT-3 surprisals

h(suffix | c_ambig): the patient examined by the doctor ...

h (suffix | c_umambig): the patient that was examined by ...

$$-\ln p(\mathbf{RR} \mid c) = h(\mathbf{RR} \mid c)$$

= $h(\text{suffix} \mid c_{\text{ambig}}) - h(\text{suffix} \mid c_{\text{unambig}})$

Estimating Parameters

Estimating adaptation coefficient k

Step 1: link LM predicted effect p(RR|c) to the empirical reading time of Group C with linear regression

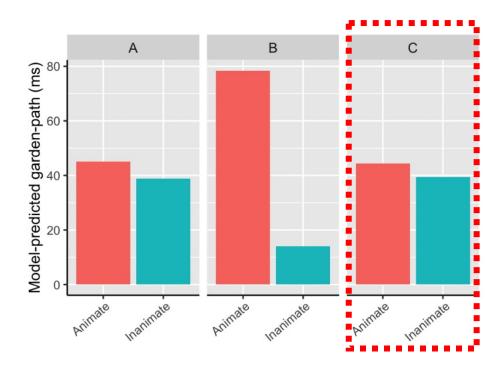
$$RT effect = -\lambda \ln p(RR \mid c)$$

> Step 2: with the estimated λ , fit linear models

$$\begin{aligned} \mathsf{RT}(\mathsf{A} \mid c_{\mathrm{ani}}) & \text{effect} \propto -\ln p(\mathsf{RR} \mid c_{\mathrm{ani}}) \\ &= \ln(1 + e^{((w'_{\mathrm{ani}} - k_A) + b')}) \\ \mathbf{RT}(\mathsf{A} \mid c_{\mathrm{inani}}) & \text{effect} \propto -\ln p(\mathsf{RR} \mid c_{\mathrm{inani}}) \\ &= \ln(1 + e^{((w'_{\mathrm{ani}} + k_A) + b')}) \\ \end{aligned} \\ \begin{aligned} &= \ln(1 + e^{((w'_{\mathrm{inani}} + k_A) + b')}) \\ &= \ln(1 + e^{((w'_{\mathrm{inani}} + k_A) + b')}) \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} &= \ln(1 + e^{((w'_{\mathrm{inani}} + k_A) + b')}) \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} &= \ln(1 + e^{((w'_{\mathrm{inani}} - k_B) + b')}) \\ \end{aligned}$$

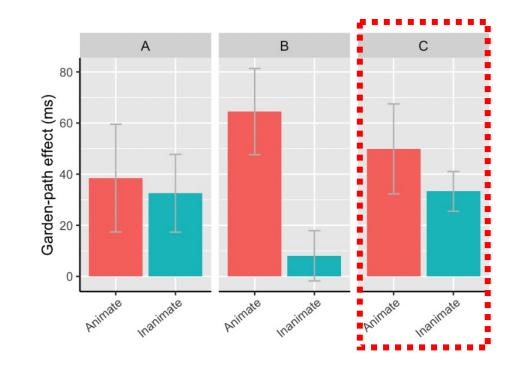
Simulation Results

Group C: control group with no exposure $(k_c = 0)$



Model Prediction

Human Experiment



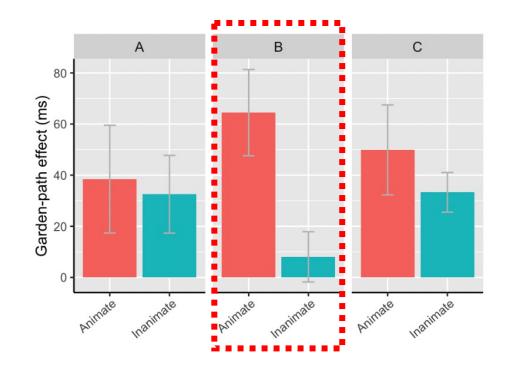
Simulation Results

Group B: animate \rightarrow MV; inanimate \rightarrow RR (k_B = 1.81)

A B C C brinne b

Model Prediction

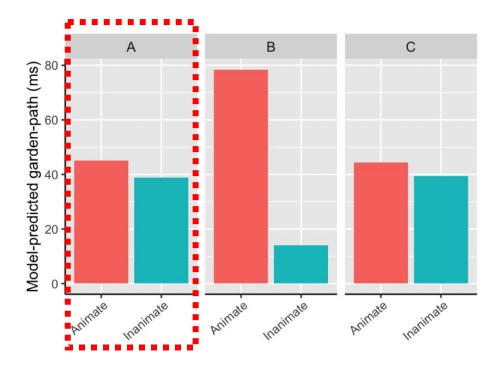
Human Experiment



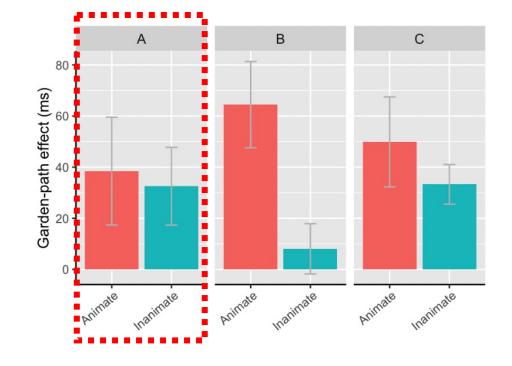
Simulation Results

Group A: inanimate \rightarrow MV; animate \rightarrow RR (k_A = -0.04)

Model Prediction



Human Experiment



- Asymmetry in cue-based adaptation: Stronger adaptation when the training is consistent with the long-term statistics ($|k_B| > |k_A|$)
- A quantitative view of cue-based adaptation in the realm of surprisal theory, complementing the qualitative conclusions in the behavioral experiment

Appendix

Formulation of statistical models in SPR experiment

Linear mixed-effect model for each individual group

 $\begin{array}{l} logRT \sim logRT.previous.region + Word.length + Ambi$ $guity * Animacy + (1 + Ambiguity * Animacy | Subj) \\ + (1 + Ambiguity | Item) \end{array}$

Linear mixed-effect model with group contrasts for A vs. C and B vs. C

 $\begin{array}{l} logRT \sim logRT.previous.region + Word.length + Ambi$ $guity * Animacy * Group + (1 + Ambiguity * Animacy \\ | Subj) + (1 + Ambiguity * Group | Item) \end{array}$